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Figure 1. The TopoGroups technique showing multiple levels of spatial aggregation of social media posts around Cleveland, OH, during the 2016
Republican National Convention. TopoGroups supports effective comparison, correlation and analysis of multi-scale aggregates by combining them
into the same display, thereby helping users to understand the spatial distribution as well as identify trends and anomalies at different granularity levels.

ABSTRACT

Spatial datasets, such as tweets in a geographic area, often ex-
hibit different distribution patterns at multiple levels of scale,
such as live updates about events occurring in very specific
locations on the map. Navigating in such multi-scale data-rich
spaces is often inefficient, requires users to choose between
overview or detail information, and does not support iden-
tifying spatial patterns at varying scales. In this paper, we
propose TopoGroups, a novel context-preserving technique
that aggregates spatial data into hierarchical clusters to im-
prove exploration and navigation at multiple spatial scales.
The technique uses a boundary distortion algorithm to mini-
mize the visual clutter caused by overlapping aggregates. Our
user study explores multiple visual encoding strategies for To-
poGroups including color, transparency, shading, and shapes
in order to convey the hierarchical and statistical information
of the geographical aggregates at different scales.
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INTRODUCTION

In geography, Tobler [35] tells us that “everything is related to
everything else, but near things are more related than distant
things.” Practically speaking, this means that spatial datasets—
such as geotagged tweets in an area, weather station measure-
ments across a region, or Yelp reviews for tourist spots in a
city—often exhibit different patterns at multiple different lev-
els of scale. For example, while tweets in a particular city may
be dominated by the visit of a foreign dignitary (say, the Pope
visiting Philadelphia in September 2015; #popeinphilly),
there may be other, more local patterns in the same geographic
region (such as a Black Lives Matter protest in the same city;
#BLM). Using traditional visualization approaches to navigate
such geospatial datasets often causes global patterns to over-
shadow local ones, can be tedious and inefficient [24], and
does not provide an overview when focusing on specific de-
tails (and vice versa). What’s more, choosing the proper scale
and interpreting the results become non-trivial tasks [28].

We propose TopoGroups, a multi-scale visual analytics tech-
nique based on automatic hierarchical spatial clustering of
data. TopoGroups models multi-scale spatial clusters as a hier-
archical tree structure where each node in the tree represents a
specific cluster, and each edge indicates a parent-child relation-
ship of clusters at adjacent scales. The technique visualizes
multiple levels of the hierarchy at the same time to provide



information about patterns at multiple scales of aggregation
(Figure 1). The boundary of each cluster is modeled using
an implicit curve that is distorted to reduce overlap between
clusters at adjacent scales. The TopoGroups technique also
allows for coupling navigation to the visual representation;
double-clicking on a specific cluster automatically zooms and
pans the viewport to fit the entire viewport to its extents.

The design space of the TopoGroups technique includes multi-
ple visual encoding choices using color, transparency, shading,
and shape for representing aggregation level, cluster contents,
and statistical aspects of the spatial data. To determine the
strengths and weaknesses of each visual encoding strategy, we
conducted several controlled laboratory experiments where
participants are asked to perform spatial analysis tasks under
different visual encodings. Our results yield guidelines on
which visual encodings to use depending on the user, task, and
application. We also discuss ideas for how TopoGroups can
be extended with text visualization encoding to show terms,
phrases, and topics for each cluster. The practical applica-
tions for TopoGroups include geographic information systems
(GIS), geospatial visual analytics, and online geographic ser-
vices such as Google Maps, Bing Maps, and OpenStreetMap.

BACKGROUND

To facilitate effective exploration of geospatial datasets at
multiple spatial scales, researchers in the visual analysis field
have proposed various visual and interaction methods. Below
we discuss work related to multi-scale interactive navigation,
multi-scale visual summary, and context-preserving design.

Multi-Scale Navigation

Interactive maps allow users to explore geospatial datasets at
multiple scales by directly zooming in and out of a region of
interest. Although this technique has been applied in various
visual analytics frameworks [4, 29, 5], there exists several lim-
itations: First, users need to switch between different spatial
scales in order to observe the corresponding results, which
adds heavy interaction overload. Moreover, since the map
typically only visualizes the results at the current scale, users
can easily lose the semantic context of the previous scales as
they interact across multiple scales.

In order to reduce the interaction overload and maintain the
semantic context, researchers have proposed several frame-
works that juxtapose multiple maps at different scales, which
allow users to visually compare the multi-scale analysis results
without the need to perform numerous zooming operations.
Ferreira et al. [14] develop an interactive system to visualize
spatiotemporal distributions of birds. Their system provides
multiple coordinated geographical map views to facilitate the
effective visual comparison of different spatial regions across
multiple scales. Javed et al. [23] propose a novel visual de-
sign named stack zooming. As users navigate on the map
from higher to lower scales, the corresponding geographical
views stack on each other in order to indicate the hierarchical
relationships across multiple scales. Delort [9] establishes a
hierarchical tree based on the spatial clustering results that
enables users to interactively select different cluster nodes
at different scales and visualizes the clusters using a Voronoi

partition. Zhang et al. [42] propose a two-staged animated tran-
sition technique in order to provide a smooth visual transition
as users navigate through multiple spatial scales.

Similarly to the juxtaposition approach, our method aims to
summarize multi-scale visual results in a single, compact visu-
alization to reduce the interaction overload and further facili-
tate effective correlation and analysis across different scales.

Multi-Scale Visual Summary

Besides the aforementioned interaction-based approaches,
there also exist visual approaches that create summaries of
the analysis results at multiple scales in a single visualization.
This approach effectively maintains the context of exploration
and reduces the overload caused by jumping across different
views for visual comparison. Dykes and Brunsdon [11] use
multiple line charts to encode the relationships between the sta-
tistical results and the geographical scales. Turkay et al. [37]
propose attribute signature, which summarizes the multi-scale
statistical results in a static visualization that avoids the tedious
zooming operations and meanwhile maintains the context of
different scales. Goodwin et al. [18] propose a novel glyph de-
sign named Scale Mosaic, in which they use a set of concentric
rectangular rings to encode the correlations of the statistical
variables from global to local scales.

Although these solutions manage to facilitate effective multi-
scale analysis and context preservation, most of them are ori-
ented toward statistical analysis (such as correlation analysis)
of multivariate geographical data, where the analysis result at
one scale can be represented as numeric values. In contrast,
our work aim to provide a visual summary of multi-scale spa-
tial clusters. To the best of our knowledge, little work has been
done in the visual analytics field to focus on combining the
multi-scale spatial aggregates in the same visual space.

Context-Preserving Visual Design

Overview+Detail and Focus+Context techniques [6] have
been widely applied in the visualization field to provide ef-
ficient context preservation. Overview-+detail separates the
focus and context into separate views, while focus+context
seamlessly integrates the focus within the context, often by
applying distortion such as fisheye distortion [16, 17]. For
overview-+detail, the stack zooming technique [21] has been
applied to both time-series exploration as well as geographical
navigation [23]. In terms of focus+context, Gutwin [19] im-
proves fisheye views by dynamically adjusting the distortion
effect based on the movement of the cursor to allow users
to more effectively target objects. Pietriga and Appert [30]
explore several dimensions including transparency and time
to control the transition between the context of focus. Vari-
ants of fisheye techniques have been applied to various usage
scenarios, such as the system diagrams [7, 40], word cloud
layout [8], and road visualization [33]. Other related examples
can be found in the survey paper by Tominski et al. [36].

Similar to focus+context, our approach combines the visu-
alization of different scales in the same display. We design
an overlap minimization method that distorts the contour of
spatial clusters to reduce visual clutter, making it easier for
users to identify aggregates at different scales.



Figure 2. Examples of multi-scale clustering: (a) Keywords are aggregated and displayed on the map (Tag Map). Zooming into the map shows lower-
level sub-events [34]; (b) Spatial clusters are visualized at consecutive zoom levels. Large clusters at a higher zoom level split into multiple small ones at
a lower level [42]; (c) Clustering results of demographic statistics under different geographical resolutions (left: state level, right: county level) [43].

CHALLENGES AND TASK CHARACTERIZATION

Spatial clustering is an important component within spatial
data mining [2], which generally refers to approaches that
groups spatial data points into classes based on their spatial
proximity. Spatial clustering provides valuable insights into
the spatial data distribution, characteristics of the individual
groups, as well as trends and anomalies within the dataset. Cre-
ating these clusters and exploring their characteristics across
multiple spatial scales is an important but challenging task.

Varying scale is an inherent property in multi-scale data analy-
sis and spatial clustering analysis (e.g., [3, 28, 22, 25]). Spatial
datasets can be aggregated by varying granularity levels that
are determined by a distance measure between pairwise data
points in the clustering process. Accordingly, clustering results
often vary significantly across different scales, as Figure 2
shows. Although the variation in scale provides a unique
perspective to characterize the spatial data attributes [28],
compared to a single scale, the size of analysis space in the
multi-scale scenario exhibits an approximate quadratic growth.
Moreover, navigating and correlating across scales remains a
non-trivial task to domain experts in various fields where multi-
scale analysis is critical in their domain-specific tasks. The
challenges faced can be characterized into two major aspects,
interaction overload and cognitive overload.

Spatial scales typically range from an overview (the global
view) to low level details (individual data points). From the
global perspective, the entire dataset is aggregated as a single
object, which may provide overall summary information, but
is too coarse-grained to reveal potential spatial patterns. From
the detail perspective, each individual data point is regarded
as one cluster, where no actual aggregation exists for analy-
sis. Therefore, users have to identify the appropriate scales
between these polar extremes that can best characterize the
hidden spatial patterns. Conventional navigation paradigms
such as the zooming operation require the users to switch to
each individual scale in order to understand the analysis re-
sult at that scale, adding significant interaction overload to
the analysis process. Moreover, in most multi-scale analysis
scenarios, understanding how the spatial attributes and pat-
terns evolve across scales is critical. For example, crime in
certain regions may be unnaturally high; however, this may
be explained if local geospatial patterns (e.g., petty thefts at
the mall) are analyzed. Hence, users require the ability to
effectively correlate analytical results between different scales.
With conventional navigation paradigms, users have to remem-
ber the analysis result at different scales during the navigation

and mentally correlating those results further increases their
cognitive overload in the analysis process.

We characterize a set of representative analytical tasks that
are involved in the navigation and exploration of multi-scale
spatial aggregates [1, 27, 31, 32]. The task characterization
guides the design of our context-preserving technique and
provides motivation for research in similar areas.

T1 Establish an overview of the geographical distribution of
aggregates at multiple scales.

T2 Distinguish different aggregates at the same and/or across
different scales in the geographical space and identify their
potential relationships.

T3 Locate aggregates of interest at the same and/or across dif-
ferent scales. Determine the spatial extent of the aggregates.

T4 Measure and compare the volume of domain-specific at-
tributes for the aggregates at the same and/or across scales.

TS5 Access raw data items (e.g., geographical location, domain
attributes) associated with a specific aggregate on demand.

TOPOGROUPS: MULTI-SCALE SPATIAL AGGREGATES

In order to tackle the aforementioned challenges, we propose
TopoGroups, a visual analytics approach that enables effec-
tive context-preserving navigation and exploration of spatial
clusters at multiple scales. Motivated by past work [18, 37,
39], TopoGroups aims to superimpose clusters of multiple
scales into a single visual display (T1, T2, T3, T4). With such
a design, the user can easily understand the structure of the
space at several levels of scale, reducing cognitive load. Fur-
thermore, this also minimizes the need for navigating across
multiple scales, thus reducing interaction overload as well.

TopoGroups consists of two major steps, following the hi-
erarchical aggregation model proposed by Elmgqvist and
Fekete [12]. First, we model the multi-scale spatial clusters
as a hierarchical representation where each scale (zoom level)
maps to a specific layer in the hierarchical structure. This step
has been described as data space aggregation [12]. Second,
we design our visual interface that allows users to explore the
spatial clusters both hierarchically and spatially, while main-
taining the context of navigation at different spatial scales.
This step has been described as simplified visual representa-
tions of the aggregates in visual space [12].

Generating the Spatial Aggregate Hierarchy

Geospatial datasets are typically represented by latitude and
longitude in a geographical coordinate system, and can be
transformed into planar coordinates based on map projection



PR

Figure 3. The hierarchical (left) and the corresponding geospatial (right)
representations of the multi-scale aggregates

methods. In TopoGroups, the geo-spatial data points are pro-
jected into 2D screen space coordinates, where the clustering
is performed. TopoGroups utilizes the common algorithm
where each data point only belongs to one cluster at a single
scale (e.g., the DBSCAN [13] algorithm). We also note that
the clustering process maintains a consistent distance measure
(Euclidean distance in screen space) across different spatial
scales (zoom level). Under such conditions, geospatial data
clustering highly depends on the spatial scales (zoom levels)
of the geographical space. As the spatial scale varies from a
higher (abstract) level to a lower (detailed) level, the screen
space distance of any pair of geo-spatial points increases ac-
cordingly. Intuitively, the clusters at a higher level split into
smaller ones at a lower level. Hence, the multi-scale nature of
spatial clustering is consistent with a hierarchical representa-
tion that can be represented as a dendrogram (Figure 3).

We represent the multi-scale aggregates using a tree struc-
ture that naturally depicts the hierarchical relationships of the
clusters at different scales. In this hierarchy, nodes represent
individual spatial clusters, while the edges represent the parent-
child relationships of clusters at adjacent spatial scales. The
clusters that are formed at the same spatial scales correspond
to the nodes that have the same depth in the tree.

Context-Preserving Visualization

In order to visualize the multi-scale hierarchy, TopoGroups cre-
ates a boundary-based visual representation using an implicit
curve for each aggregate in the hierarchy (Figure 4(a)). The
benefits of this particular representation lie in three aspects,
referring to the six guidelines G/ through G6 by Elmqvist
and Fekete [12]. First, the boundary within the context of a
geographical space naturally depicts the spatial scope of the
aggregate, which is intuitive and interpretable to the users (G2,
G6). Second, while the data points are typically represented as
small circles, the implicit curve is easily distinguishable from
the data items (G4). Third, since the visual space inside the
boundary of the higher level clusters can be utilized to visual-
ize the lower level clusters, the boundary-based representation
produces minimum visual clutter (G3).

We note that the overlapping of the boundaries at different
scales may exist, as shown in Figure 4(b). To this end, we pro-
pose a bottom-up distortion algorithm (Figure 5) toward effec-
tive overlap minimization of the multi-scale spatial boundaries
(G3, G5). This is inspired by the nested treemap design that
adds padding to adjacent rectangles in order to highlight the
parent nodes in the hierarchy more effectively [10]. Motivated
by the force-directed drawing algorithm [15], our algorithm
traverses the hierarchy from the bottom level and for each

non-leaf node, the algorithm repositions the control points of
the boundary that overlap with its children for the sake of both
an aesthetic visual result and performance efficiency. The algo-
rithm ensures an optimal amount of distance between adjacent
boundaries to provide a visual budget for the boundary-based
visual encodings and avoid visual clutter.

In order to facilitate effective visual perception of the hierar-
chical and statistical information of the geographical aggre-
gates, TopoGroups provides a set of visual encoding strategies
combining different perceptual dimensions including color,
transparency, shading, and shapes. The strategies have been
applied to the inner area of the aggregates as well as the bound-
ary, which is inspired by Bristle Maps [20, 26] where map
features (roads, subway line, city blocks, etc.) are associated
with visual elements—bristles—in order to visually encode
the multivariate information in the geographical region of in-
terest. In TopoGroups, we aim to convey both univariate and
multivariate attributes of the spatial aggregates through our
visual encoding strategies. In the rest of this section, we illus-
trate our visual designs based on a practical usage scenario of
multi-scale spatial aggregates generated from location-based
social media data (Twitter) in Cleveland, OH during the 2016
Republican National Convention.

Univariate Attributes

Aggregates’ univariate attributes typically include the volume
of data points, size of the geographical area, scale of aggrega-
tion (zoom level), etc. This type of attributes can be encoded
using either the color of the inner area of the cluster, or the
width/color of the boundary. For example, the analyst is in-
terested in investigating the scale of aggregation at which
different clusters have formed in Cleveland during the RNC
event, and learning the relationships of different clusters across
scales. To this end, TopoGroups encodes the scale of the in-
dividual clusters by rendering the inner area using specific
color schemes. Figure 6 illustrates the encoding strategy based
on a blue-red color scheme where dark blue represents the
abstract level while dark red represents the detailed level (T2,
T3). Clusters of the same color indicate that they are generated
at the same level. Different color schemes such as sequential
or qualitative schemes can also be applied here. In order to
evaluate whether color encoding can enhance the understand-
ing of hierarchical relationships of multi-scale aggregates, and
which color scheme achieves the best result, we conducted a
user study (Details are discussed in the evaluation section).

In addition to filling the color, TopoGroups applies the halo
effect on the boundary of the clusters (Figure 6(b)) in order
to visually indicate the sidedness of the boundary [38]. The
halo is only rendered at one side of the boundary (outer side of
the cluster) in order to provide a visual cue in terms of which
side of the boundary belongs to the cluster. The halo effect
is especially helpful when the user zooms into a certain level
where only the partial cluster is visualized in the viewport.

Multivariate Attributes

Aggregates’ multivariate attributes are typically generated
from classification or categorization of the data items, such as
different topics extracted from social media message content.
Assuming the analyst is curious about the major topics during



Figure 4. Spatial aggregates are generated (a) at multiple scales and coupled into one visual display using a boundary-based representation (b). The
boundaries are properly distorted and smoothed to avoid visual clutter (c). Visual encodings and interactions are designed to facilitate effective explo-

ration of multi-scale aggregates (d).
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Figure 5. Boundary overlap minimization: (a) The boundaries of the
parent and child overlap (highlighted in the dashed box); (b) The par-
ent’s boundary is inflated in order to avoid the overlap; (c) Part of the
inflation result is used to form the new boundary of the parent.

the RNC event, and wishes to further examine the prominent
topics in different clusters at different scales, TopoGroups au-
tomatically extracts major topics (e.g., RNC-related, traffic
and accident, drinking and entertainment) and provides several
boundary-based encoding strategies to convey the quantitative
information of different topics for the individual aggregates
(T4) as Figure 7 shows. In all three designs, each color corre-
sponds to a specific category:

e Continuous colored segments: Figure 7(a) shows line seg-
ments being used as the major visual element to convey the
quantity of categories. The length of the colored segment is
in proportion to the quantity of the corresponding category.
Segments repeat to fill the entire boundary.

e Discrete colored dashes: Figure 7(b) shows a sequence of
dashes being used to convey the quantity of categories. The
number of colored dashes in each sequence is in proportion
to the quantity of the corresponding category. Sequences
repeat to fill the entire boundary. We choose the dash as
the visual element in this design instead of circle or other
similar shapes for the sake of visual discrimination between
aggregates and data items (G4).

e Stacked lines: Figure 7(c) shows the entire boundary line
of the cluster being used to convey the quantity of cate-
gories. The width of the boundary lines is in proportion to
the quantity of the corresponding category. The lines for
different categories are stacked next to each other.

We have conducted a user study to assess the efficacy of these
techniques in conveying the categorical distribution, the details
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Figure 6. The area inside the multi-scale clusters is filled based on a
blue-red color scheme from blue (abstract level) to red (detailed level)
to indicate the aggregation level. The comparison of the visualization

without halo (a) and with halo (b) is shown. With halo, it is easier for the
user to determine which side of the boundary belongs to this cluster.

of which are discussed in the evaluation section. We also note
that for both the continuous segments and discrete dashes, we
fill the entire boundary of the clusters by concatenating the
segments or dash sequences repetitively along the boundary.
The rationale behind such a design is that the repetitive pat-
terns avoid misleading the users in terms of interpreting the
categorical information (Figure 8(b)). Without the repetitive
patterns, the visualization can convey the wrong categorical
information particularly when only a partial cluster is shown
in the viewport (Figure 8(a)).

As Figure 1(left) shows, with the effective visual encodings
provided in TopoGroups, the analyst clearly notices that while
most of the tweets are related to RNC at an abstract scale (the
major color in the outward cluster is red), as she investigates
lower levels, the clusters within Cleveland are more related
to RNC, while in the nearby cities more tweets relate to traf-
fic (green) and drinking (blue). As she further zooms into
the city of Cleveland, she identifies that drinking and traffic
related tweets form several clusters around the suburban re-
gions (Figure 1(right)). Therefore, TopoGroups provides a
comprehensive picture in terms of how the different topics are
correlated with the clusters at different spatial scales, and how
they evolve from the overview level to the detailed level.

Interaction and Interface Design

TopoGroups consists of two visual and interactive dialogs: an
interactive map view that visualizes the multi-scale aggregates
within the same geographical display, and a tree view that
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Figure 7. Design alternatives for encoding categorical information on
the boundary: (a) Continuous colored segments; (b) Discrete colored
dashes; (c) Stacked Lines.

illustrates the hierarchical relationships of the multi-scale ag-
gregates. These two dialogs are coordinated and seamlessly
integrated when the users navigate across different scales.

General Navigation: The interactive map view allows the
users to navigate across different spatial scales through com-
mon zooming operations (T2, T3). Each time the user zooms
in or out, the map navigates to either the higher or lower adja-
cent level, respectively. TopoGroups visualizes the multi-scale
spatial aggregates that are visible or partially visible in the map
viewport. Aggregates that occupy too small screen space (i.e.,
less than 100 pixels) are not rendered (G/). TopoGroups also
provides a configurable parameter S that restricts the number
of adjacent scales to visualize (G/) in order to avoid com-
putational performance issue and potential overload on the
user. For example, if the user navigates to zoom level 10, with
S = 2, then only the levels from 8 to 12 are visualized. After
a visual inspection of the results, we found S = 2 to produce
reasonable results with respect to performance and readability.

Muti-Scale Navigation through Selecting Targets: To-
poGroups supports simple yet intuitive interactions that allow
users to navigate across multiple levels. As the user double-
clicks on a target aggregate, the map automatically pans to
the target aggregate and zooms in to fit its extent (T3). With
this design, the conventional navigation paradigm that requires
multiple panning and zooming operations is simplified by a
single and intuitive interaction that significantly alleviates the
interaction overload. Furthermore, by double-clicking on the
region outside the target aggregate, TopoGroups automatically
resets the view back to the previous geographical space.

Exploring the Hierarchy — The Tree View: The tree view
in TopoGroups illustrates the multi-scale hierarchy using both
a dendrogram and a node-link diagram [41] (T1, T2). The
dendrogram illustrates the scale of aggregation, as the nodes
of the same scale are aligned based on the same vertical offset
(Figure 4(d)). However, this may cause significant visual
clutter when the number of nodes is large. Hence, TopoGroups
provides a complementary node-link representation that fully
utilizes the two dimensional space. The node-link diagram
simply regards the hierarchical structure as a graph rendered
using a force-directed layout. The user can toggle between the
two views in the control panel.

The tree view is coordinated with the map view through the
brushing and linking paradigm. As the user navigates on the
map, the aggregates visible in the geographical space are high-
lighted in the tree view. With this design, while the user may
focus on exploring the detailed levels on the map, the tree view
provides a context of the entire structure to the user. When

Figure 8. Without the repeating patterns (a), the visualization may con-
vey the wrong categorical information when only the partial cluster is in
the viewport. This visual confusion can be avoided by introducing the
repeating patterns (b).

the user selects one or more nodes in the tree view, the corre-
sponding aggregates on the map view highlight accordingly.
The tree view supports filtering based on the domain-specific
attributes of the aggregates such as geographical size, data
volume and density. The user can also filter to show only a
subtree by specifying a node as the root of that subtree. The
view supports sorting the children (from left to right) of each
tree node based on the aforementioned attributes.

Details-on-Demand: TopoGroups supports easy access to
details-on-demand of the raw data items (T5). When the user
right-clicks on the specific aggregate and selects the relevant
option, the data items that belong to this aggregate are shown
on the map as circles. Simultaneously, a separate message
table shows the semantic content of those data items in a list
and highlights the keywords relevant to different categories
based on the same color scheme.

Implementation Details

TopoGroups consists of a multi-layered SVG canvas. The
map layer stays at the bottom of the hierarchy and provides
an interactive map visualization. On top of the map layer is
the visualization layer, which is the primary workspace for
rendering various visual elements including boundaries, halos,
categorical encodings, etc. The toolbox layer stays on top of
the hierarchy, showing interactive menus and the toolbar.

TopoGroups applies cardinal spline interpolation to smooth
the boundary of the spatial aggregates. In order to fill
color inside the boundary, the SVG <mask> command is
used to create masks according to the boundary of the in-
ner children aggregates, thus avoid rendering those areas.
TopoGroups achieves the shadow (halo) effect by initiating
an SVG filter (<filter>) and associates a Gaussian blur
(<feGaussianBlur>) to the filter. The size of the shadow
is controlled by the standard deviation (SD) of the Gaussian
blur (<stdDeviation>). A higher SD value results in a
larger shadow in screen space. The SD value in TopoGroups
is set as 5, which achieves a satisfactory visual effect.

TopoGroups utilizes SVG dash styling to render colored line
segments (each line segment is regarded as a long dash)
and dash sequences along the boundary. Specifically, the
<stroke-dasharray> attribute defines the patterns and
gaps of the dash styling, and the <stroke-dashoffset>
attribute controls the offset where the pattern begins. In order
to visualize multiple categories, TopoGroups pre-calculates
the dash patterns and offset for each category based on the
categorical distribution, and then renders them iteratively.



EVALUATION

TopoGroups visualizes the hierarchical spatial aggregates and
provides visual encoding strategies to indicate domain-specific
attributes associated with individual aggregates. Our evalua-
tion focuses on design alternatives for TopoGroups that convey
hierarchical and categorical information, as we believe these
low-level visual encodings are critical factors for multi-scale
perception and context preservation. In order to focus on
the task primitives, we break down the experiment into two
aspects (Study 1: structural/hierarchical; Study 2: seman-
tic/categorical) rather than introduce more complexity in the
tasks, which may obfuscate the results.

Participants and Apparatus

We recruited 20 participants (age range of 19 to 28, 7 female,
13 male) for Study 1, and 20 participants (age range of 22 to
36, 6 female, 14 male) for Study 2. Most participants were
students and staffs from our college of engineering, who have
some basic understanding of the concepts being tested (e.g.,
spatial clustering, hierarchical structures). The participants
were paid $5 for participation in one study. The experiments
were conducted on a windows-based computer with a 30-inch
Dell monitor. The interface for the main visualization occupied
an area of 1600x1600 pixels.

Procedure

The two studies were conducted independently and had similar
procedures. At the start of the study, the investigator asked
the participants to sign a consent form and introduced the
research background and the different visualization designs.
Then the investigator provided a training session and presented
sample questions covering major visual designs and task types
to familiarize the participants with the tasks. In order to ensure
that they did not have any difficulty or misunderstanding, the
participants were provided with the correct answer and were
asked to raise any questions or concerns to the investigator
during the training. The accuracy and the completion time for
each trial were recorded. After each study, the participants
were asked to complete an online demographic survey.

User Study 1: Encoding the Hierarchical Information
This experiment evaluated the efficacy of color and different
color schemes in terms of conveying the hierarchical structure
of the spatial aggregates within the geographical space.

Techniques and Task Design
In this experiment, we utilized four different visual encoding
strategies (visualization technique V) in the experiment:

NoC Only the boundaries of the clusters are visualized. No color
is rendered inside the cluster.

SEQ A sequential color scheme is used to indicate the scale of
aggregates. In TopoGroups blue is used as the main hue.
Lighter colors represent higher scales (abstract level), and
darker colors represent lower scales (detailed level).

B-R A blue-red color scheme is used to indicate the scale of ag-
gregates, which starts from blue (higher scales), transitions
to yellow (middle scales), and ends at red (lower scales).

QT A qualitative color scheme is used to indicate the scale.

. ® .
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Figure 9. Task design in Study 1: (a) Comparing scales of aggregation
(TSC); (b) Identifying parent-children relationships (TPC).

We developed two classes of typical tasks. The first class
investigated the participants’ performance in terms of visual
comparison between scales of individual aggregates (TSC). A
typical task of this class highlights two aggregates denoted as
A and B, and the participants are asked to decide which one
is at a higher (or lower) level (Figure 9(a)). The second class
of tasks evaluated the participants’ understanding in terms of
parent-child relationships among aggregates at different scales
(TPC). A typical task of this class specified a cluster denoted
as T, and highlighted a set of clusters denoted as X, Y, Z. The
participants were asked to decide which cluster among X, Y
and Z contains 7 in the visualization (Figure 9(b)).

We controlled the difficulty level D of each trial based on the
complexity of the cluster hierarchy. The hierarchy complexity
is defined based on two parameters: the height (or depth) of
the hierarchy (L), and the average number of children for each
non-leaf node (C). Moreover, we define three difficulty lev-
els: easy (L € {3,4};C = 2), middle (L € {6,7};C = 4), hard
(L € {9,10};C = 6). Each trial consists of a multiple-choice
question along with the visualization. The four techniques
were presented in a counter-balanced order. The whole study
consisted of 4 (technique) x 2 (task type) x 3 (complexity of
hierarchy) x 2 (repetition) = 48 trials.

Results and Observations

The accuracy was quite high (average of 96.04%) across all
visualization techniques for both tasks. Since there was no
time limit for the tasks, the users were able to correctly identify
the hierarchy of the spatial aggregates shown.

The completion time for the type 1 task (TSC) is shown in Fig-
ure 10(a). The results have been analyzed based on a repeated-
measure analysis of variance (assumptions met). Visualization
technique V had a significant main effect on completion time
(F(3,57) =27.12, p < .0001). Pairwise comparison between
visualization techniques using a Tukey HSD showed that all
pairs have statistical significance (p < .05), except for the
pair of no color (NoC) and sequential scheme (SEQ). As ex-
pected, the difficulty level D had a significant main effect on
completion time as well (F(2, 38) = 48.54, p < .0001). Fur-
thermore, there was a significant interaction effect between
visualization technique V and difficulty level D on completion
time (F(6, 114) = 6.60, p < .0001) As shown in Figure 10(a),
the sequential scheme (SEQ) has the highest completion time
(mean: 19.70 seconds), followed by no color (NoC) (mean:
18.14 seconds), then the qualitative scheme (QT) (mean: 14.49
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Figure 10. Completion time for the two types of tasks in Study 1. As
the result indicates, color encoding the areas helps identify the scale of
aggregation (a), but not the parent-child relationships (b).

seconds), and finally the blue-red scheme (B-R) (mean: 10.18
seconds). The blue-red color scheme had the lowest comple-
tion time, which can be explained by noting that this scheme
consists of different hues diverging from the middle, making
the encoding space a bit larger while retaining a step to step
relationship between the shades at each level. The qualitative
color scheme follows the blue-red scheme in completion time.
This scheme facilitates the user tracing across multiple scales
since equal levels are quickly identifiable by their color, and
adjacent levels are also easily distinguishable. The sequential
color scheme and no color scheme had the longest completion
time. This can be explained by noting the sequential color
scheme is based on a single hue, and requires a higher cogni-
tive load for a user to identify the equal levels between very
similar shades of the same color. Similarly, without rendering
color in the aggregates, users have to identify the scales purely
based on the nested boundaries, which adds to the cognitive
overload. Based on the post-experiment survey, users seem
to prefer the blue-red color scheme: one user commented: "I
liked the contours with the blue-red color as it is the easiest to
view and decreases my response time to answer."

The completion time for the type 2 task (TPC) is shown in
Figure 10(b). Based on a repeated-measure analysis of vari-
ance, visualization type V had a significant main effect on
completion time (F(3, 57) = 2.87, p < .05). However, for pair-
wise comparisons using a Tukey HSD, only no color (NoC) vs
qualitative scheme (QT) and sequential scheme (SEQ) vs qual-
itative scheme (QT) were marginally significant (p < .05). The
difference between the completion time for each technique
(Figure 10(b)) was relatively small (QT: 11.92 seconds, B-R:
11.31 seconds, SEQ: 10.06 seconds and NoC: 10.04 seconds).
This can be explained by the fact that although color changes
across scale, there is little color diversity among different
sub-groups of aggregates. As users are not able to intuitively
identify these differences with the help of color, color may be
of limited benefit in identifying the parent-child relationship.

Our guidelines for color encoding the multi-scale aggregates
in order to convey hierarchical information are summarized
in two aspects. First, color encoding the areas of multi-scale
aggregates helps to identify the aggregation level. We found
that a blue-red (or similar) color scheme is most effective to-
ward this end. Second, while encoding the areas of multi-scale
aggregates can assist identification of the aggregation level,
it does not fully convey the parent-child relationships. Addi-

- ®

Figure 11. Task design in Study 2: Comparing categories within one
aggregate (a) and across multiple aggregates (b).

tional encoding or interaction designs are required, such as
providing different sub-clusters with individualized color en-
coding or highlighting sub-clusters when a parent is selected.

User Study 2: Encoding Categories on the Boundary
This section describes the experiment that evaluates the design
alternatives in TopoGroups that encodes categorical informa-
tion at individual aggregates.

Techniques and Task Design

In this experiment, we evaluated three design choices (visu-
alization technique V) (Figure 7) for encoding categorical
information on the boundary of the spatial aggregates: con-
tinuous colored segments (CS), discrete colored dashes (DD)
and stacked lines (SL). Two types of tasks were involved in
the experiment. For the first type of task, the participants were
shown a single aggregate on the map, with the boundary being
visualized according to an underlying categorical distribution
(category set denoted as S = {C1,C2,C3...}). The participants
were asked to identify the category that has the highest/lowest
volume within category set S in the visualization (Figure 11(a)).
For the second type of task, the participants were shown two
aggregates denoted as A and B on the map, with the boundaries
being visualized according to two different categorical distri-
bution of the same category set: with one category denoted
as C1 highlighted, the participants were asked to determine in
which cluster (A or B) the category C1 is more prominent (has
a higher proportion among all categories) (Figure 11(b)). For
each type of task, the same visual design was applied to all
the aggregates. The different categories were visualized based
on a qualitative color scheme, appropriately adjusted so that
when concatenating segments of different colors or stacking
lines of different colors, the adjacent colors were easily dis-
tinguishable. Although the proposed designs are applied to
multi-scale aggregates, the scale itself has a minimum effect
on the visual perception of categories. Hence, we limit this
study to a single scale to emphasize the impact of comparing
categories within and across different aggregates.

We controlled the difficulty level D of each trial based on the
size of the category set (2 and 4). Each trial consisted of a
multiple-choice question along with the visualization. The
three techniques were presented in a counter-balanced order.
The whole study consisted of 3 (technique) x 2 (task type) x
2 (difficulty level) x 3 (repetition) = 36 trials.
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Figure 12. Accuracy and completion time for Study 2. Among the three
design alternatives, the discrete dash design achieves the highest accu-
racy (a) and meanwhile requires the longest time (b).

Results and Observations

The results of accuracy (Figure 12(a)) show that the discrete
dashes (DD) had the highest accuracy (average: 85.42%), fol-
lowed by continuous segments (CS) (average: 76.67%) and
stacked lines (SL) (average: 67.50%). The results have been
analyzed based on the linear regression (glimmix) with the
assumptions satisfied. Visualization technique V had a sig-
nificant main effect on completion time (F(2, 38) = 10.76, p
< .0001). Pairwise comparison between visualization tech-
niques using a Tukey HSD showed that all pairs had statistical
significance (p < .05). As expected, difficulty level D had a
significant main effect on completion time (F(1, 19) = 45.11,
p < .0001). The results reflect that calculating the number of
dashes is more accurate than visually comparing the length
of different segments, especially when the difference between
the values is small. Furthermore, stacked lines was the least ef-
fective as the visualization budget (the entire width of lines) is
too limited to visually reflect the variation of different values.

In terms of the completion time, the participants spent a rela-
tively long time on the discrete dashes (DD) (20.46 seconds),
followed by continuous segments (CS) (12.57 seconds) and
stacked lines (SL) (9.00 seconds). Visualization technique V
had a significant main effect on completion time (F(2, 38) =
47.08, p < .0001). Pairwise comparison between visualization
techniques using a Tukey HSD showed that all pairs have sta-
tistical significance (p < .05). As expected, difficulty level D
had a significant main effect on completion time as well (F(1,
19) = 45.88, p < .0001). The results indicate that although
DD achieves the highest accuracy, it requires a longer time
for the users to count the number of dashes in each category
for comparison. In terms of visual perception, the number of
visual units in this design is the largest, requiring a longer time
for the users to perceive. When the length of the boundary
is large, or the size of the dash is small, this can potentially
result in a larger number of dashes and overload the users.

Our guidelines for encoding categories on the boundary are
summarized in the following two aspects. First, the discrete
dash design is the most effective in terms of the accuracy. This
is useful in analyses where comparison accuracy is critical, and
the quantitative difference between categories are potentially
not obvious. Second, the continuous segment design should
be used for analyses where speed is favored over accuracy, as
the discrete dash design may overload users in extreme cases.

Experimental Results in Practice

Analyzing criminal, traffic and civil (CTC) incident data col-
lected in the cities of West Lafayette and Lafayette, Indiana
(more than 170000 incidents from 2010 to 2016) illustrates the
use and benefit of the TopoGroups technique. Assume a police
officer is interested in several crime types in these regions,
including liguor law violation, robbery and theft, he starts the
analysis by visualizing the multi-scale clusters at an overview
level (Figure 13(left)). The user observes that while a huge
cluster is formed at an abstract scale (county level) that covers
the two cities, as the officer investigates lower scales (city
level), the cluster splits into two smaller ones that are located
around the downtown area of the two cities, indicating a high
frequency of incidents. Furthermore, the two clusters are visu-
ally separated by the Wabash River, which is consistent with
the fact that the river is a natural boundary between the two
cities. With the continuous segment design applied to show
the distribution of different crimes, the user also notices that
while most of the incidents are related to heft at a higher scale
(the major color in the outward cluster is green), the cluster
within downtown West Lafayette is more related to liguor law
violation (blue), while most incidents related to theft come
from Lafayette and suburban areas in West Lafayette. Since
Purdue University is located in downtown West Lafayette, this
indicates the campus is safer than other regions (little robbery
or theft), although many liguor law violations occur.

The user further zooms in to lower scales (street level) to
examine the different patterns in the two cities. Figure 13(mid-
dle) shows the downtown West Lafayette where the campus
is located. Interestingly, the user identifies several clusters
around the campus malls and student activity centers where
the liquor law violation is prominent. The mall on the east side
of the campus also has a considerable number of robbery and
theft incidents. The officer then navigates to Lafayette where
the visual result indicates active robbery and theft activities
around major shopping malls and supermarkets. Therefore
with TopoGroups, while the user navigates across different
scales or targets a specific scale, the visualization effectively
preserves the context at other adjacent scales, thus reducing
interaction and cognitive overload during the analysis process.

DISCUSSION

TopoGroups distorts the boundary of aggregates and couples
multi-scale results in a single display in order to preserve the
context of multiple scales. Our distortion method (Fig 5) has
a minimal effect in terms of lowering the fidelity (G5) and
interpretability (G6) of the boundary representation, since the
proposed distortion approach enlarges the parent boundary
that overlaps with its children. Hence, the data points that
belong to a specific aggregate are guaranteed to stay within the
boundary of the same aggregate after the distortion is applied.
However, we note that the boundary itself is an approximate
representation for aggregates, since the boundary merely de-
picts the spatial coverage of the corresponding data items
instead of their accurate spatial distribution, and the distortion
may further exaggerate the boundary and provide misleading
results to the users. Compared to TopoGroups, conventional
techniques (e.g., [14, 23, 42]) typically visualize a single-scale
result in one visualization. Although they need interaction and
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Figure 13. Multi-scale spatial aggregates of CTC incident data in West Lafayette and Lafayette, IN. Left: The campus has a high frequency of liquor
violations while other regions show more incidents related to robbery and theft. Middle: Most incidents related to liquor violations occur around the
campus malls and student activity centers. Right: Robbery and theft occur frequently around the shopping malls and supermarkets.

may create cognitive overload, these techniques present the
original (accurate) analysis results that are intuitive for users
to understand. Hence, conventional techniques are preferred
in analysis tasks where geographical accuracy is required.

Although TopoGroups provides users with a configurable pa-
rameter S to restrict the number of adjacent scales visible from
the current scale, further evaluations are required to explore
the scalability of our approach. First, as the number of scales
visible on the map increases, the amount of multi-scale infor-
mation presented in the visual space increases accordingly,
which can potentially burden or distract users especially when
focusing on a specific level. Second, too many levels visible
on the map may make it difficult for users to perceive the un-
derlying map due to occlusion. Hence, TopoGroups is favored
in analysis tasks that mainly require comparison or correlation
of the analysis results across scales. In contrast, conventional
techniques are more suitable for scenarios where users tar-
get several individual (discrete) scales of interest within the
multi-scale analysis space.

Since TopoGroups summarizes the categorical information
along the boundary within a geographical context, the users
may associate the categorical information with the geographic
information in the background. Unfortunately, the users may
have the wrong interpretation that the visualization represents
the local statistics near the boundary. We note that this is a
limitation of this current design, and preventing this requires
clear explanation or training to the users before they use the
system. Future work could address this design limitation by
encoding the locality of information into the boundary itself.
For example, categorical data points could be projected to
the nearest point on the cluster boundary, which would re-
duce potential errors over larger areas, and indicate the spatial
distribution of the categorical information contained within.

Although TopoGroups visualizes multiple scales in the same
display, the user may only focus on a specific scale (i.e., the
current zoom level) while other scales are used to provide
contextual information. A potential improvement might be to
allocate more visualization budget (screen space) to the level
on which one is focusing. This can be achieved by adding a
weight parameter to the distortion algorithm so that boundaries
of adjacent scales are shifted with larger offsets. This could
provide an opportunity to encode more information within the
chosen scale, perhaps layering different techniques on top of

one another. For example, a semi-transparent sedimentation
layer as a background would allow for users to quickly under-
stand the categorical distribution while still being able to add
other information relevant to the analysis space.

As a future extension, we would like to extend TopoGroups to
visualize the semantic knowledge underlying the multi-scale
aggregates. The prominent terms or phrases extracted from
the content associated with the data items can be embedded
within the aggregates, in order to maintain the semantic context
across different scales. A potential issue associated with this
text-based visualization is that some keywords that are of
lower significance may have a longer length; thus, occupy
more space and unduly draw the users’ attention. A potential
solution for this might be to dynamically adjust the font weight
(thickness) in order to make the important words stand out.

CONCLUSION AND FUTURE WORK

Our primary contribution in this paper is a novel context-
preserving visualization and navigation technique called To-
poGroups for representing discrete spatial data as hierarchi-
cally clustered shapes. In terms of visual representation, we
have explored the design space of different visual encodings
for the boundaries and contents of each shape using color,
transparency, and labels. In terms of interaction, we have de-
scribed appropriate interactions for manipulating TopoGroups,
including smoothly navigating in the cluster hierarchy. Re-
sults from a user study yielded guidelines on optimal visual
encodings and interactions for the technique.

Spatially distributed data is ubiquitous, particularly in the
domain of geolocated social media posts, so we see many
potential future research directions in this area. Our future
work includes integrating TopoGroups with text visualization,
exploring the use of advanced text analytics techniques such
as topic modeling, and applying the TopoGroups technique to
full-fledged spatial visualization systems.
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